Chapter 53

Population Ecology
processes influence population density, dispersion, and

- A populati a single species living in the same general area

Density: A Dynamic Perspective

- In most cases, it is impractical or impossible to count all individuals in a population
- Sampling techniques can be used to estimate densities and total population sizes
- Population size can be estimated by either extrapolation from small samples, an index of population size, or the markrecapture method
- Population ecology is the study of populations in relation to environment, including environmental influences on density and distribution, age structure, and population size

Density and Dispersion

- Density is the number of individuals per unit area or volume
- Dispersion is the pattern of spacing among individuals within the boundaries of the population
- Density is the result of an interplay between processes that add individuals to a population and those that remove individuals
- Immigration is the influx of new individuals from other areas
- Emigration is the movement of individuals out of a population

Survivorship Curves

- A survivorship curve is a graphic way of representing the data in a life table
- The survivorship curve for Belding's ground squirrels shows a relatively
constant death rate

Demographics

- Demography is the study of the vital statistics of a population and how they change over time
- Death rates and birth rates are of particular interest to demographers

Reproductive Rates

- For species with sexual reproduction, demographers often concentrate on females in a population
- A reproductive table, or fertility schedule, is an age-specific summary of the reproductive rates in a population
- It describes reproductive patterns of a population
- In animals, parental care of smaller broods may facilitate survival of offspring

Exponential Growth

- Exponential population growth is population increase under idealized conditions
- Under these conditions, the rate of reproduction is at its maximum, called the intrinsic rate of increase
- Some plants produce a large number of small seeds, ensuring that at least some of them will grow and eventually reproduce
- Zero population growth occurs when the birth rate equals the death rate
- Most ecologists use differential calculus to express population growth as growth rate at a particular instant in time:

$$
\frac{\Delta N}{\Delta t}=r N
$$

where $N=$ population size, $t=$ time, and $r=$ per capita rate of increase $=$ birth - death

Concept 53.4: The logistic model describes how a population grows more slowly as it nears its carrying capacity

- Exponential growth cannot be sustained for long in any population
- A more realistic population model limits growth by incorporating carrying capacity
- Carrying capacity (K) is the maximum population size the environment can support

Population Dynamics

- The study of population dynamics focuses on the complex interactions between biotic and abiotic factors that cause variation in population size

Stability and Fluctuation

- Long-term population studies have challenged the hypothesis that populations of large mammals are relatively stable over time
- Weather can affect population size over time

- Changes in predation pressure can drive population fluctuations

The Global Human Population

- The human population increased relatively slowly until about 1650 and then began to grow exponentially
- Though the global population is still growing, the rate of growth began to slow during the 1960s

 Change- To maintain population stability, a regional human population can exist in one of two configurations:
- Zero population growth =

High birth rate - High death rate

- Zero population growth = Low birth rate - Low death rate
- The demographic transition is the move from the first state toward the second state

Limits on Human Population Size

- The ecological footprint concept summarizes the aggregate land and water area needed to sustain the people of a nation
- It is one measure of how close we are to the carrying capacity of Earth
- Countries vary greatly in footprint size and available ecological capacity

- Our carrying capacity could potentially be limited by food, space, nonrenewable resources, or buildup of wastes

Food From the Sea

- What types of organisms are harvested?
- Finfish (about 90\% of worldwide harvest)
- Shellfish
- Other species such as jellyfish, sea cucumbers, polychaetes and seaweed
- While seafood represents only about 1% of the food consumed each year, it represents about 30% of total animal protein consumed

Atlantic bluefin tuna Thunnus thynnus

- Can grow >300 cm; 680 kg
- Extremely streamlined, one of the ocean's fastest swimmers, endothermic

Bluefin as food

- 2001440 pound tuna sold for \$220,000 (\$500/pound)
- Farm in oceanic pens
- Spotter planes and electric harpoons

Worldwide Marine Catch and Mariculture

Optimal Yield and Overfishing

- Sea-life species are renewable resources
- However, for a fishery to last long-term, it must be fished in a sustainable way
- The sustainable yield is the amount that can be caught and just maintain a constant population size

Managing the Resources

- Management can be difficult for many reasons:
- Maximum sustainable yield is difficult to calculate
- Harvested species may compete with other species and fishing pressure may affect competitive balance
- Real fisheries are more complex than models
- High seas are "common property"

Collapse of a Fishery

- A fishery is regarded as collapsed if numbers fall to 10% of historic highs
- It is estimated that one-third of fisheries are already collapsed
- A 2006 study indicates that all major fisheries will collapse by 2050 if protective measure are not taken to better manage and protect these resources
- Bluefin tuna harpoon
- http://www.youtube.com/watch?v=tL1te9SbLs\&feature=related
- crab pot
- http://www.youtube.com/watch?v=Zd OP FfpRdk
- tuna farming
- http://www.youtube.com/watch?v=XIbGTw LGZNU\&feature=related

